

CS & IT College 2020/2021 Semester 1

CS203 Database Principals

Chapter 1: Introduction

Asst.Prof : Asaad Alhijaj

Reference:

"Database System Concepts Fourth Edition" by Abraham Silberschatz Henry F. Korth S. Sudarshan , McGraw-Hill ISBN 0-07-255481-9

Chapter 1: Introduction

- Purpose of Database Systems
- View of Data
- Data Models
- Data Definition Language
- Data Manipulation Language
- Transaction Management
- Storage Management
- Database Administrator
- Database Users
- Overall System Structure

Database Management System (DBMS)

- Collection of interrelated data
- Set of programs to access the data
- DBMS contains information about a particular enterprise
- DBMS provides an environment that is both *convenient* and *efficient* to use.
- Database Applications:
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases touch all aspects of our lives

©Silberschatz, Korth and Sudarshar

Purpose of Database System

- In the early days, database applications were built on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become part of program code

©Silberschatz, Korth and Sudarshar

Hard to add new constraints or change existing ones

Purpose of Database Systems (Cont.)

Drawbacks of using file systems (cont.)

- Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - E.g. transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - E.g. two people reading a balance and updating it at the same time

©Silberschatz, Korth and Sudarshar

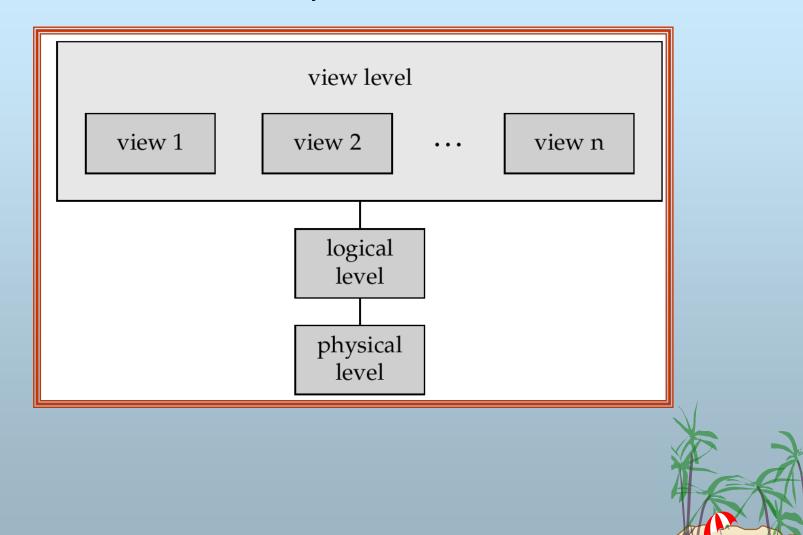
- Security problems
- Database systems offer solutions to all the above problems

Levels of Abstraction

- **Physical level** describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

```
type customer = record
```

name : string; *street* : string; *city* : integer; **end**;


View level: application programs hide details of data types. Views can also hide information (e.g., salary) for security purposes.

View of Data

An architecture for a database system

Database System Concepts

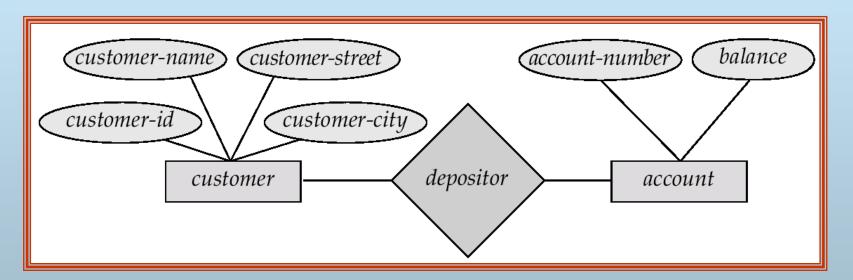
©Silberschatz, Korth and Sudarshan

Instances and Schemas

- Similar to **types** and **variables** in programming languages
- **Schema** the logical structure of the database
 - e.g., the database consists of information about a set of *customers* and *accounts* and the relationship between them)
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

©Silberschatz, Korth and Sudarshar

Data Models


- A collection of tools for describing
 - 🆻 data
 - 🖗 data relationships
 - 🖗 data semantics
 - 🖗 data constraints
- 1. Entity-Relationship model (ER)
- 2. Relational model
- 3. Other models:
 - A. object-oriented model
 - B. semi-structured data models
 - C. Older models: network model and hierarchical model

Entity-Relationship Model

Example of schema in the entity-relationship model

Entity Relationship Model (Cont.)

- E-R model of real world
 - **Entities** (objects)
 - E.g. customers, accounts, bank branch
 - **Relationships** between entities

E.g. Account A-101 is *held by* customer Johnson

Relationship set *depositor* associates customers with accounts

- Widely used for database design
 - Database design in E-R model usually converted to design in the relational model (coming up next) which is used for storage and processing

Relational Model

				Attributes		
Example of tabular data in the relational model						
Customer-id	customer- name	customer- street	customer- city	account- number		
192-83-7465	Johnson	Alma	Palo Alto	A-101		
019-28-3746	Smith	North	Rye	A-215		
192-83-7465	Johnson	Alma	Palo Alto	A-201		
321-12-3123	Jones	Main	Harrison	A-217		
019-28-3746	Smith	North	Rye	A-201		

A Sample Relational Database

customer-id	customer-name	customer-street	customer-city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

(a) The customer table

account-number	balance	
A-101	500	
A-101 A-215	700	
A-102	400	
A-305	350	
A-201	900	
A-217	750	
A-222	700	
(b) The <i>account</i> table		

customer-id	account-number	
192-83-7465	A-101	
192-83-7465	A-201	
019-28-3746	A-215	
677-89-9011	A-102	
182-73-6091	A-305	
321-12-3123	A-217	
336-66-9999	A-222	
019-28-3746	A-201	
(c) The <i>depositor</i> table		

Specification notation for defining the database schema

 E.g.
 create table account (account-number char(10), balance integer)

- DDL compiler generates a set of tables stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - 🖗 database schema
 - P Data storage and definition language
 - Ianguage in which the storage structure and access methods used by the database system are specified
 - Usually an extension of the data definition language

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- Two classes of languages
 - Procedural user specifies what data is required and how to get those data
 - Nonprocedural user specifies what data is required without specifying how to get those data
- SQL is the most widely used query language

SQL: widely used non-procedural language

- E.g. find the name of the customer with customer-id 192-83-7465
 - select customer.customer-name
 - from customer
 - where customer.customer-id = '192-83-7465'
- E.g. find the balances of all accounts held by the customer with customer-id 192-83-7465

select account.balance
from depositor, account
where depositor.customer-id = '192-83-7465' and
depositor.account-number = account.account-number

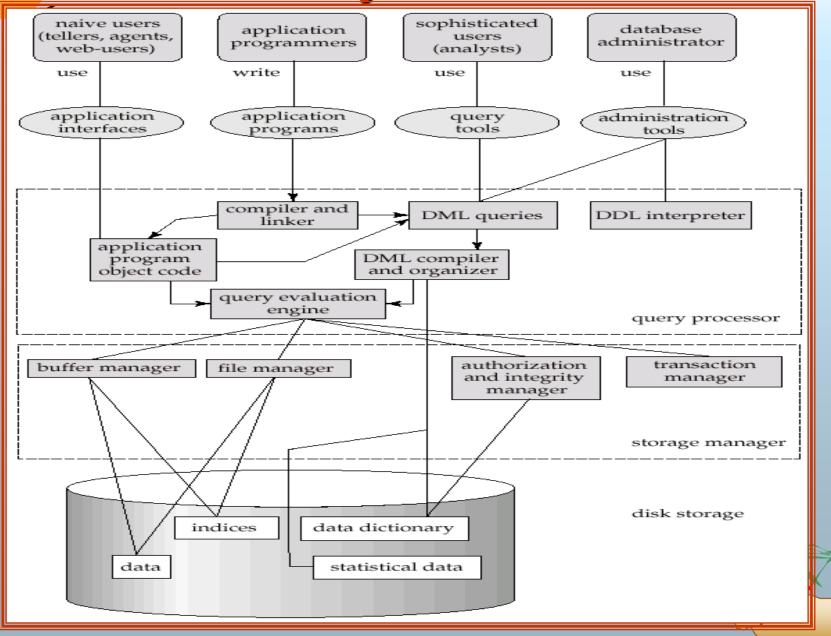
- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g. ODBC/JDBC) which allow SQL queries to be sent to a database

Database Administrator

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users
 - Monitoring performance and responding to changes in requirements

Transaction Management/ Storage Management

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.
- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - interaction with the file manager
 - efficient storing, retrieving and updating of data



Database Users

- Users are differentiated by the way they expect to interact with the system
- Application programmers interact with system through DML calls
- Sophisticated users form requests in a database query language
- Specialized users write specialized database applications that do not fit into the traditional data processing framework
- Naïve users invoke one of the permanent application programs that have been written previously
 - E.g. people accessing database over the web, bank tellers, clerical staff

Overall System Structure

©Silberschatz, Korth and Sudarshan